
1

Context-aware Session-based Recommendation
An Attentional Deep Learning Approach to Re-ranking

Tomás Alexandre de Menezes Pereira
tomas.m.pereira@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
October 2021

Abstract—Recommender systems mediate a substantial share of
the online interaction interface, providing an ever-more relevant
array of benefits for both users and business providers amidst
the exponential growth of available digital content, products
and services. Some domains, such as travel and e-commerce
applications experience sporadic and mostly anonymous activity,
thereby only observing short-term session-based dynamics, requir-
ing robust solutions independent of structured user profiles. This
work encompasses the development of an attentional deep learning
re-ranking recommender under these challenging conditions, on
the basis of the dataset provided for the 2019 ACL Recommender
Systems Challenge. The developed approach demonstrates an 85th
percentile result (in predicted online MRR, considering a limited
score range exceeding that of the provided baseline) with minimal
feature generation effort in a very restricted computational
environment. Nonetheless, various inconsistencies in the research
field including the prominent divergence between offline and
online production objectives, motivated a shift in the main focus
away from leaderboard performance, which typically rewards
feature over-engineering and model complexity. An analysis of
representation learning’s potential and specific component impact,
derived from an automatic Bayesian Optimization with Gaussian
Processes procedure over a highly conditional hyperparameter
space, was emphasized instead.

Index Terms—Recommender systems, session-based recom-
mendation, sequential interaction modeling, deep learning, self-
attention, bayesian optimization

I. INTRODUCTION

Recommendation methods have been refined over time to
further enhance the personalized user experience, usually only
made possible with detailed knowledge and deep understanding
of the item space, the users, their preferences and behavior, and
additional contextualization. Item similarity and neighborhood-
based methods have given way to latent factor models that
take different users’ interaction information into account and
hybrid strategies that can better tackle cold start situations and
provide multi-scale data modeling. The generalization of these
concepts with neural network-based architectures, for instance,
has allowed for increased control over the incorporation of
crucial multi-modal contextual signals, enabling circumstantial
factors to adapt the recommendation space, among an array of
other advantages [1]. This is especially useful in the sequential
recommendation setting, where temporal patterns and trends
from past implicit and explicit feedback, usually derived from
activity logs, can be complemented with features modeling the
continually changing needs and interests of users to infer their
intent and predict future interactions.

Nonetheless, some domains such as travel and e-commerce
applications experience sporadic and mostly anonymous ac-

tivity, thereby only observing short-term dynamics, requiring
alternative solutions independent of structured user profiles.
This work encompasses the development of a recommender
under these challenging conditions on the basis of the dataset
provided for the 2019 ACL Recommender Systems (RecSys)
Challenge, using state-of-the-art methods such as attention
mechanisms, ubiquitous in modern approaches. The misalign-
ment between most offline objectives and those relevant in
production environments motivated a shift in focus away from
maximum leaderboard performance achievement with tradi-
tional competition strategies such as the usage of overly com-
plex models or hundreds of input features. Instead, the model’s
architectural optimization process, usually disregarded in the
literature, was emphasized in an exploration of representation
learning’s potential. Additionally, the developed model was
tested against simpler rule-based baselines which have recently
produced competitive results even against the state of the art in
sequential recommendation, and its specific component impact
was also assessed.

Subsequently, this work’s research objectives (ROs) were
reduced to three main points:
RO.1 Development of a competitive modular deep learning re-

ranking recommender system for sparse session-based
domains, focused on representation learning;

RO.2 Application of state-of-the-art processing techniques and
methods, such as self-attention mechanisms to help cap-
ture user preferences and intent from behavioral interac-
tion sequences;

RO.3 Implementation of an automatic bayesian optimization
process for the model’s architecture, subject to a highly
conditional hyperparameter space.

The next Section II introduces the RecSys 2019 Challenge.
Section III provides an overview of session-based literature and
domain challenges. The first methodology Section IV outlines
the problem formulation. It is followed by descriptions of the
data and feature processing in Section V, and the model’s
optimization process in Section VI. The results are presented in
Section VII. Finally, some brief conclusion points are provided
in Section VIII.

II. THE RECSYS 2019 CHALLENGE

In its 2019 edition, the annual ACL RecSys Challenge
was organized by trivago, TU Wien, Politecnico di Bari and
Karlsruhe Institute of Technology with the goal of exploring
context-aware recommendation on a highly sparse session-
based setting, unsuitable for most traditional approaches [2].

2

The selected digital travel domain is subject to a variety of
obstacles, including the constantly changing prices, offers,
and availability of a vast collection of accommodation, the
extreme cold-start induced by the infrequent listing browsing by
mostly anonymous users, and the highly dynamic search criteria
motivated by their variable long and short-term preferences and
trip-specific needs [3].

DestinationSearch Item/POI

Filter/Sort by

i

Deals

Clickout

Rating

Info

Image

Fig. 1. trivago’s website interaction distribution with the user action types
available in the RecSys19 dataset presented in Table II, adapted from [3].

trivago’s global search platform aggregates localized ac-
commodation information (including price, rating, visual and
textual descriptions, among others) based on user queries. Users
can interact with the listings in multiple ways, some of which
are presented in Figure 1, and click on relevant ones to be
redirected to external affiliate booking sites where transactions
can be completed.

Naturally influenced by the platform’s primary revenue
stream centered on cost-per-click [4], the technical objective of
the challenge consisted in the prediction of which items were
more likely to be clicked at the end of each of their user’s
largest sessions, from lists of items (impressions) presented at
these events, to improve the ranking process. This required
the re-ordering of the impression lists by click likelihood
(representing contextual relevance), which was evaluated with
the Mean Reciprocal Rank (MRR),

MRR =
1

N

N∑
j=1

1

rankj
, (1)

where N is the number of evaluated lists (samples) and rankn

is the predicted position rank for the clicked item (target label)
in sample j. The Reciprocal Rank’s value, and consequent new
ranking performance for a sample, increases with the proximity
of the target to the top of each list, reaching its maximum of
one for ranked lists where the clicked item appears in the top
position (rankj = 1).

The data provided by trivago was comprised of anonymized
user session interaction logs recorded in their platform over
eight days, 01-08 November 2018, and an additional accommo-
dation metadata database with item-specific attribute lists. Each
log entry is characterized by the features displayed in Table I,
consisting of a single user interaction over a given item, from
the fixed set of ten available types presented in Table II.

The logs were provided in separate training and test sets,
with the latter consisting of events occurring in the last two

Table I. RSC19 original features.

Original feature Description

User ID User identifier
Session ID Session identifier
Timestamp UNIX timestamp in seconds for the time of interaction
Step Time step in the sequence of events within the session
Action Action type for each event (see Table II)
Reference Reference identifier for each action (see Table II)
Platform Country of the web platform used for the search
City City name for the session search context
Device Device used for the search
Filters List of active filters at a given timestamp
Impressions List of item identifiers displayed to the user in a click event
Prices Corresponding list of nightly prices for the impression items
Metadata Specific item attributes (features and amenities)

Table II. Types of user actions and respective action references.

Action type Description Reference

Clickout Item click that redirects the user to an affiliate website Item ID
Interaction item rating Interaction with an item’s rating/review elements Item ID
Interaction item info Interaction with an item’s information elements Item ID
Interaction item image Interaction with an item’s images Item ID
Interaction item deals Interaction to extend a given item’s affiliate price deals Item ID

element
Search for item Specific accommodation search Item ID
Change of sort order User determined sort of the presented impressions, Sort type

by price, distance, rating and popularity
Filter selection User determined impression filtering by feature Filter type

(e.g., amenities or minimum number of stars)
Search for destination Specific location-based filtering Location
Search for POI Specific point of interest-based filtering Point of interest

days, for which the ground truth labels of the clicked items in
the largest user sessions were omitted. Up until the challenge’s
deadline of July 2019, the user-submitted entries, consisting
of predicted rank lists for the relevant click event items, were
evaluated on an online platform which has, since then, ceased to
operate. At the time of writing, the omitted test labels have not
yet been made publicly available for offline use. As such, the
data regarded in this work is limited to the six-day training set,
with its almost 16 million actions, 730 803 users, and 910 683
sessions, from here on defined as RSC19. Hence, to obtain
comparable results, the data was split according to the process
applied by the 7th overall placed team Mustelideos [5], which
considered every click a training sample, and reproduced a
setting similar to that found in the original challenge’s test
dataset, omitting the labels for each user’s last largest session
clicks in the final two training days (05 and 06 November). For
hyperparameter optimization purposes, a subset of the resulting
training data was split into smaller validation and test sets,
corresponding to the last largest session clicks in the third and
fourth days, respectively.

III. RELATED WORK

With the ability to model complex non-linear user-item
interaction patterns and with the capacity to learn joint repre-
sentations of multi-modal structured and unstructured data [6],
allowing for the incorporation of various contextual signals,
deep learning architectures have greatly influenced the recom-
mender system space, dominating the state-of-the-art in recent
years [1]. The neural generalization of traditional methods, such
as matrix factorization, expanded onto the sequential field, with
most new solutions generating ranked predictions of top-K
items most likely to be interacted with in the near future or
after a given action, as shown in Figure 2.

Sparser session-based settings, such as the one studied in
this work, where individual user information is limited or

3

Candidate
generation
(optional)

dozens
(top-K) Refined top-K

recommendationRanking Re-rankingmillions
thousands/
hundredsItem

corpus

Usage of user/session history, context and item features

more refinedless refined

Fig. 2. Modern recommendation framework, modified from [7].

completely unavailable and cold-start scenarios are frequent1,
have been shown to benefit significantly from short-term intent
representations derived from implicit sequential interaction
patterns. Due to its unmatched sequence processing ability in a
variety of tasks, the use of Recurrent Neural Network (RNN)-
based architectures in this domain is naturally ubiquitous.

Hidasi et al. [8] created the foundation for top-K next-
item session-based neural recommenders by introducing a
second order RNN architecture with negative output sampling
to manage the large output space in the RSC15 clickstream
dataset, GRU4Rec. Gated Recurrent Units (GRUs) were found
to outperform the more complex Long Short-Term Memory
(LSTM) units with numerous one-hot encoded item ID input
sequence variations. The specialized pairwise ranking loss
functions introduced in their work were later found to promote
vanishing gradients and were modified in [9], which also
showed a comparatively good performance from an altered
categorical cross-entropy log loss. Tan et al. [10] further
improved the GRU-based model with embedding dropout, an
adaptation to temporal changes and data processing techniques.
A direct embedding output similar to that of [7]’s in candidate
generation was proposed with cosine similarity instead but
a high-dimensional softmax cross-entropy approach was still
found to perform better. [11] developed a hierarchical RNN
model, in which a top-level predicts initializations for a lower-
level GRU modeling the sequential session information. If
user identifiers are available, the top-level can easily relay the
evolution of each user’s interests over time and across sessions.

The incorporation of additional context features besides past
item ID interaction sequences has also shown to be crucial in
these domains. [12] developed an architecture with three paral-
lel GRU-based structures to process item IDs with descriptive
image and text feature vectors simultaneously. Smirnova and
Vasile [13] proposed a conditional RNN model and considered
supplemental temporal and event type features, with different
stage context injection at the input, unit dynamic and output
structural levels.

As in sequence-based settings, works including [14, 15]
have consolidated the importance of session-based attention.
Because interest drifts that lead to redundant clicks are relevant
in shorter timespans, [14]’s hybrid attentional encoders (with
global and local focus) emphasize the user’s main session
purpose in item click sequences, producing a unified ses-
sion representation used to compute click probabilities for
available items, trained with a categorical cross-entropy loss.
Liu et al. [15] built upon this solution, introducing higher
attention dependency with a memory priority model, more

1Greatly limiting the performance of user-dependent neighborhood and
matrix factorization methods.

capable of deriving user intent from smaller sessions. The use
of transformers has started to become equally central in these
domains, with [16], for instance, outperforming previous non-
attentional recurrent approaches in next-item recommendation.

Challenges and Limitations
Most modern recommendation approaches, including the

ones mentioned earlier in this section, are concerned with the
production of ranked item lists from the entirety or majority of
the item corpus2. This objective differs from that of the chal-
lenge studied in this work, resulting in the inability to directly
compare the presented methods to the developed solution. The
item list conditioning experienced by the re-ranking process
can be easily lifted, and adaptations to the high-dimensional
output space, using hierarchical softmax, negative sampling,
or output embedding generation with nearest neighbors, for
instance, can be quickly implemented. However, unlike in the
prevalently studied e-commerce domain, where inter-category
product exploration can occur in an almost frictionless manner,
the travel domain’s extreme location dependence combined
with the lack of item-specific location metadata in the RSC19
dataset prevented full corpus-based tests.3

However, problems in recommender systems research extend
far beyond these unaligned objectives. The large variety of
public and private datasets with endless variations, evaluation
metrics, validation procedures, lack of optimization details
for reproducibility, and baselines used in the field has left
researchers struggling to measure progress, questioning state-
of-the-art advances. Recent works have found that the lack
of standardization and solid benchmarking has led to most
datasets only being equally considered in a very small amount
of relevant papers [17]. Metrics defining the performance of
developed algorithms can range from the traditional information
retrieval Precision and Recall to the Normalized Discounted
Cumulative Gain (NDCG), Mean Average Precision (MAP),
Click Through Rate (CTR), and the previously introduced
MRR, among others [17, 18]. These, matched with another
assortment of validation processes, are often chosen based on
past usage without additional justification, usually with also
arbitrary list cutoff sizes. Most importantly, maximizing offline
user-centric objectives such as CTR might not even reflect
the intended business-centric purposes of the system (e.g.,
additional revenue) [18]. Some competition-based advances
are ignored due to the unjustifiable engineering effort needed
for their production environment application. YouTube, for
instance, preferred a general unified deep learning pointwise
system over more complicated ensemble or better offline per-
forming systems for efficiency and scalability reasons [7].

Deep learning applications are also affected by these draw-
backs and the subfield’s lack of direction is concerning. [17,
19, 20] found that “computationally and conceptually” simpler
alternatives including association rule, nearest-neighbor, and
even popularity aggregator methods could outperform algo-
rithms such as NCF [21] or base GRU4Rec [8]4.

2Corresponding to the first ranking stage of Figure 2.
3In most cases, it would not make sense for hotels in Dubai to show up in a

London-based search session. In RSC19, the same items can appear associated
to dozens of different search cities, complicating location-based grouping.

4Although in offline conditions more comparable to data science compe-
titions where popularity bias, small corpus coverage and scalability issues
inherent to most can be disregarded.

4

The inherent unpredictability of user behaviors, combined
with the lack of intent ground truth support in implicit signals,
training feedback loops and an array of biases, such as the
presentation bias clearly visible in RSC19’s click distribution
by impression position in Figure 3, further increase the need
for robust strategies.

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25

Impression position

0

25000

50000

75000

100000

125000

150000

C
lic

k
co

un
t

Click position distribution

Fig. 3. Imbalanced clicked item position distribution. Lower position indices
are equivalent to higher layout position.

IV. PROBLEM FORMULATION

The re-ranking of the accommodation impression lists re-
quired by the challenge can be framed as a supervised learning,
multiclass classification task solving the proposed implicit click
prediction surrogate problem. To predict the clicked item’s posi-
tion at any given click event in a user session y, a deep learning
model was designed to generate an array of click probabilities
ŷ for the displayed impression list items, leveraging previous
session-based sequential behavior signals and numerous types
of additional context as input. These probabilities are used to
calculate the negative log likelihood cost (NLL), according
to which the model is trained, with the maximum value’s
index contributing to the classification evaluation. The ranking
performance is given by the MRR of the sorted probability
indices, yrank, as shown in the high-level modeling process for
a session sample input displayed in Figure 4.

3

2

4

1

5

60.04

0.09

0.32

0.15

0.12

0.28

5542

5310

3141

3012

5338

18293

?

3141

Lisbon

3929

3012

Price

18293 i

3012

Predicted arrays

Label

Rank

Additional Context
(impression, sequence, session)

Model

2

Impression list

Su
bs

es
si

on

Fig. 4. High-level simplified modeling process for the eight event session
sample (subsession) s. The model outputs a vector ŷ with the click likelihood
for each of the impression list k(1)’s item positions. A generalized transformed
context input is represented, consisting of dynamic and static features captured
up to the click event’s timestamp t(8) (unknown at prediction time). The click
probability vector is sorted to produce the position rank vector ŷrank. Since the
predicted rank for the ground truth label y is 4, the RR for this example is 1/4.

Formally, let S = (e(1), ..., e(n)) ≡ (e(τ))nτ=1 denote an
arbitrary user session with n sequential events. Each of these
events consists of an interaction a, from the ten possible types
previously introduced in Table II, with a reference item i at

time t contextualized5 by c, such that the τ th event can be
represented as the tuple e(τ) = (a(τ), i(τ), t(τ), c(τ)). In partic-
ular, a single session contains a subsequence of w ∈ {1, ..., n}
click events, (e

(τh)
h |a(τh) = clickout)wh=1, with e(n) = e

(τw)
w ,

i.e., the last session event corresponds to a click. Click events
are crucial to the problem as they contain the impression
lists presented to the users, k(h) (for every arbitrary e

(τh)
h),

which in turn hold the targets. Based on these, the model was
trained to produce a sequential prediction for what item in
the impression list is clicked at t(τh) + ε, where ε is a small
time interval, by calculating click probabilities for each one,
ŷ(h) = P (y(h) = k

(h)
p |x(τh),θ)p=1,...,|k(h)|, as noted above.

To leverage every click’s information, the training set was
augmented with a vectorized implementation of the method
used in [10, 14, 15], such that every session produced w − 1
additional subsessions (training samples) containing the events
preceding each of the w session click events, s(l) = (e(τ))τlτ=1,
represented below in Figure 5.

.
 .

 .

/ Past/Future Clicks

Other Past Interactions

Event types

Fig. 5. Augmentation process for session S, which generates w − 1 new
subsessions {s(1), ..., s(w−1)}, (s(w) = S), based on the w click events,
each associated with the corresponding impression list k(h).

The process described above was repeated for every session
S

(j)
∀j∈N in the dataset D, for which the session axis had been

omitted in simplification.

V. DATA PROCESSING

This section encompasses the rationale behind the develop-
ment of the recommender’s input X , consisting of relevant
features generated and extracted from the raw activity log
dataset, such that the contextual signals and patterns depicting
user intent are captured efficiently in complete representations.6

A. Preprocessing

The initial preprocessing stage consisted of general data
structural modification, cleansing and filtering steps, mostly
based on dataset exploration and visualization, as preparation
for subsequent feature-based operations.

Duplicate log entries, interactions with undefined reference
values, invalid click events with impression lists missing the
clicked reference and subsessions without clicks were removed.
Additionally, user sort interactions were incorporated as filter
selections.

The original dataset’s event distribution was dominated by
image interactions, which accounted for almost three quarters
of the events largely due to similar consecutive actions with the
same reference items. So as to not overpower the interaction

5For simplicity, c corresponds to a vectorial proxy for different time-
dependent and independent contextual signals.

6General processing was done in Python 3.7.7, on a 6-core 2.6GHz i7,
16GB RAM machine. Model implementation was done in TensorFlow 2.3.0
and training was executed on Google Colab’s GPU mode subject to the free
dynamic usage limits, in https://research.google.com/colaboratory/faq.html.

https://research.google.com/colaboratory/faq.html

5

sequences, these consecutive actions were grouped into single
events, returning the respective temporal endpoints and gener-
ating a frequency feature, corresponding to each group’s size,
majorly reducing the action distribution imbalance. 7

Instead of removing only sequences of length one as in most
of the literature, sessions and initial subsessions with less than
three events were dropped. This was done to ensure model
robustness by reducing unwanted stochasticity from training
due to low contextualization, as it was expectedly noted that the
first session time steps mainly consisted of more exploratory,
non-item specific interactions.8

In the end, the original 910 683 user sessions were reduced
by approximately 36% down to 332 849, containing 660 526
samples and 2 995 184 events with more even action time and
count distributions. There was an average of two clicks per
processed session, whose size remained relatively small, with
only 15% containing more than ten time steps, although their
median event number increased from four to six.

B. Feature engineering and representation
The feature set was divided into three main different cat-

egories and two additional subcategories, expanded in Table
Table III, according to their characteristics and behavioral
structure across training examples:

• Interaction sequence features, Xseq ∈ Rnseq×mseq , model
dynamic sequential information across a session leading
up to a given click event;

• Session features, Xses ∈ Rmses , consist of static context
signals that define each subsession sample;
– Filter features, Xfilt ∈ Rdfilt , comprise subsession-based

search and sort filters selected by the users;
• Impression features, X imp ∈ Rnimp×mimp , describe and

summarize properties and interactions for the impression
list’s items at every click;
– Metadata features, Xmeta ∈ Rnimp×dmeta , contain ad-

ditional impression characteristics retrieved from the
metadata database.

Table III. Feature space. *Original features, +Vectorized inter and in-session
time accumulators, �Accompanied by boolean features for value existence.

Time dif. is the time delta between general interactions and actions of a
given type. Dwell time is given by the interaction time plus the time delta up

to the following interaction.

Sequential (Xseq) Session (Xses) Impressions (X imp)

• Ref. item ID* • Subsession • Imp. item ID*
• Action ID* • Total substeps • Position
• Step* • Total time steps • Price*
• Frequency • Total session time • Views+

• Session time� • Imp. list length • Clicks+

• Time dif.� • City ID* • Interactions+

• Dwell time� • Platform* • Dwell time+
• Device* • Metadata (Xmeta)*
• Filters (Xfilt)*

The processed dataset had to then be transformed in order
to create suitable numeric representations for the deep learning
model.

7The ratio of most to least frequent action counts dropped from 86.3 to 9.8.
8Destination searches, for instance, accounted for 40% of the first event’s

total interaction count, demonstrating a decreasing relative count trend with
session progression also shared by actions including POI searches and changes
in sort order.

For nominal categorical features, an approach similar to
that of [7] was taken, with those belonging to the same
vocabulary/ID space sharing the same embedding layers but
being separately input to the network, such that specialized
representations are joint-learned per feature by deeper layers,
with added efficiency and generalization benefits. In this case,
four ID spaces were considered: the item ID space, shared
by reference and impression item IDs, the attribute ID space,
shared by filters and item attributes, and the remaining indi-
vidual action ID and city ID spaces. These vocabularies were
created after a full data pass9 and consisted of lookup tables
mapping the original IDs into sequential integers, which are
then subsequently mapped to the corresponding vector embed-
dings. Out-of-vocabulary values, such as non-accommodation
reference IDs, were mapped to the 1 integer token.

Regarding continuous and ordinal features, the Min-max
normalization method is typically used to linearly rescale
each variable to the [0,1] range. However, unbounded counter
or time-based features are especially prone to legitimate ex-
treme observations, sometimes highly influential in the distri-
butions, which might contain valuable information that would
be wrongly discarded if artificial value limits were to be
imposed [22]. Therefore, Quant, the non-linear method applied
in [7, 23], consisting of a uniform distribution mapping from
an estimate of the feature’s cumulative distribution function,
was implemented instead yielding better results. Statistics were
computed on the training set only, as to prevent information
leakage from the test data.

Sequences were post-padded with zeros, in the case of
embedding inputs, and -1 for the remaining features where
zeros were meaningful values in the data. Padded time steps
were then masked so that they were not considered by the
network without it having to learn its irrelevance. Interaction
sequences (in Xseq) were truncated at 25 time steps, given
that 95% of the sessions were smaller than this value. This
also corresponds to the maximum impression length available
(in X imp), and as embeddings are shared between item IDs
in these two feature blocks, additional unnecessary padding is
avoided. Because every individual metadata item attribute and
filter was mapped to its own embedding vector, the attributes
characterizing a single item in the impression lists and the
active filters in a single session corresponded to variable length
embedding sequences. To concatenate them with the remaining
impression and session features, these embedding sequences
were averaged, as done in [7], creating non-sequential unified
sample representations. Each sequence was first padded with
zeros and masked to obtain fixed sequences of length 112 (the
maximum number of simultaneous item attributes and active
filters). Metadata sequences, for instance, were then input to
a Time Distributed Average Pooling layer (to average each of
the available impression items’ attributes) and then to a Lambda
layer to re-mask any NaN (Not a Number) values resulting from
averages over zero-only sequences.

VI. MODEL ARCHITECTURE OPTIMIZATION

The deep learning model’s structural core was designed
following a multitask transfer learning architecture [6], with

9It was assumed that the ID spaces were immutable in the timespan
considered. Vocabulary sizes - Item ID: 713 602, Attribute ID: 168, Action
ID: 10, City ID: 20 268.

6

specialized branch modules processing the three main feature
inputs separately (Xseq, X imp, Xses, with parameter sharing
limited to the embeddings), whose output representations are
then combined, converging into a Multilayer Perceptron con-
nected to the final dimensionality correcting softmax layer that
produces the classifier’s output. The highly conditional hyper-
parameter space fully described in Table IV defined a wide
variety of possible model complexity and was optimized using
a modified Keras Tuner 1.0 [24] Bayesian Optimization with
Gaussian Processes (BO GP), Algorithm 1, maximizing the
MRR objective function.

Table IV. Hyperparameter space. (I) Inputs, (E) Embeddings, (B) Gated
parameters, meaning they can become False. The ranges were defined from a

combination of initial test runs, hardware limitation and typical literature
values. Active M1 parameters are boldfaced. Children hyperparameters

require active parents.

Impression attributes (I)

Item embedding (E)

Impression RNN type

Impression RNN units

Impression RNN dropout (B)

Impression Dense units (B)

Impression Dense dropout (B)

Metadata (I)

Metadata embedding (E)

Sequential codes (I)

Sequential attributes (I)

Action embedding (E)

Sequential RNN type

Sequential RNN units

Sequential RNN dropout (B)

Sequential Self-attention type (B)

Attention dimension

Sequential Dense units (B)

Sequential Dense dropout (B)

Session features (I)

Filters (I)

Session Dense dropout (B)

City embedding (E)

Session Dense units

Out 3 Dense units (B)

Out 3 Dense dropout (B)

Out 2 Dense units (B)

Out 2 Dense dropout (B)

Out 1 Dense units (B)

Out 1 Dense dropout (B)

Dense activation functions

Learning rate

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H12

H13

H14

H15

H16

H17

H18

H19

H20

H21

H22

H23

H24

H25

H26

H27

H28

H29

H30

H31

H32

CodesHyperparameters

H11

 Im
pr

es
si

on
s

In
te

ra
ct

io
n

se
qu

en
ce

s
 S

es
si

on
s

 J
oi

nt
 M

LP

 J
oi

nt
 M

LP

 P
ar

am
s

Range

{T, F}

{2,...,50}

{GRU, S-GRU, Bi-GRU, Bi-S-GRU}

{10,...,250}

[0,...,0.7]

{10,...,250}

[0,...,0.7]

{T, F}

{2,...,30}

{T, F}

{T, F}

{1,...,15}

{10,...,250}

[0,...,0.7]

{None, Add., Dot, Hierarch., Scaled}

{32,...,320}

{10,...,250}

[0,...,0.7]

{T, F}

{T, F}

{2,...,30}

{10,...,250}

[0,...,0.7]

{25;125,...,500}

{150,...,1000}

[0,...,0.7]

[0,...,0.7]

{2x Out 2 Dense units}

[0,...,0.7]

[10-4,...,10-1]

{ReLU, PReLU, LeakyReLU}

{GRU, S-GRU, Bi-GRU, Bi-S-GRU}

M1

True

2

Bi-S-GRU

Bi-S-GRU

Hierarch.

250

False

False

True

False

3
True

True

6

218

False

124

False

False

True

True

16

142

0.33

475

0.10

False

False

False

False

ReLU

0.0012

Algorithm 1: Bayesian Optimization with Gaussian Processes.
1 D1 ← ∅ . An initial collection of points can be used instead of an empty set
2 for n ∈ 1, ..., N do
3 fit GP on observations to obtain µn(x), σn(x)
4 select new hyperparameters xn+1 by optimizing acquisition

function α, xn+1 = argmaxx αn(x;Dn)
5 query objective function to obtain yn+1

6 augment data Dn+1 = {Dn, (xn+1, yn+1)}
7 update statistical model

8 return model with best performing hyperparameter input

With a collection of input hyperparameter configuration
points x = x1:n, and noisy objective function observations
y = f(x)+ε, the GP bayesian posterior’s10 mean and variance
are given by:

µn(x) = K(x,x)[K(x,x) + σ2
noiseI]

−1y, (2)

10Assuming a Gaussian likelihood model given the observed data points and
a zero-mean GP prior.

σ2
n(x) = K(x,x)−K(x,x)[K(x,x) + σ2

noiseI]
−1∗

K(x,x).
(3)

Each entry in the covariance matrices K is given by the
selected simplified Matérn kernel function with smoothness
parameter ν set to 5/2,

kν=5/2(xi,xj) =
(
1 +

√
5

l
d(xi,xj) +

5

3l2
d(xi,xj)

2
)
∗

exp
(
−

√
5

l
d(xi,xj)

)
.

(4)

The Upper Confidence Bound acquisition function was used:

αn(x) = µn(x) + β1/2
n σn(x). (5)

Default tuner σ2
noise and β values of 0.0001 and 2.6 were

used. Inactive hyperparameters in optimization runs were reset
to default minimum values, as in [25]. The tuner optimizes the
kernel’s length scale l such that it maximizes the log marginal
likelihood, with the L-BFGS-B algorithm.11

To cover the most amount of space in the limited time frame,
the batch size was not tuned but instead fixed at 512 and early
stopping patience12 was set to 1. The Adam optimizer was
used, with a tuned initial learning rate given by H32 (remaining
hyperparameters such as moment estimate decay rates were left
with default values).

The final process, which consisted of 1530 total runs, was
divided into three modes:

1) Random: The bayesian optimization process can be ini-
tialized with an arbitrary number of data points. This
implementation generated 180 random samples as initial
training data for the tuner, corresponding to four times
the dimensionality of the hyperparameter space (increased
from the default three due to high conditionality).

2) Bayesian: The tuner iteratively applied Algorithm 1 for
1200 runs, from the random foundation.

3) Top: Due to the non-deterministic nature of neural net-
works, the top scoring hyperparameter set was not selected
directly from the Bayesian section. Instead, the top 20
architectures were picked for five additional runs with
different parameter initializations. The selection was then
refined, with the top 10 being run an additional five times,
for a more comprehensive performance overview.

In the final model architecture, described in Table IV and
presented in Figure 6, the Hierarchical attention mechanism
[26] in the sequential interaction branch outputs a weighted
sum of the Stacked Bidirectional GRU’s output h:

c =

n∑
j=1

αjh
(j), (6)

αj = softmax(ej), (7)

ej = u>
a tanh(W ah

(j)), (8)

where the weight vector ua and matrix W a are learned during
the training process.

11If this algorithm does not converge within 20 restarts by default, the tuner
draws a random sample from the hyperparameter space. The UCB acq. function
was similarly optimized with L-BFGS-B, with a higher restart number of 50.

12Number of allowed epochs with increasing validation loss versus the
minimum obtained in the run.

7

Stacked Bi-GRU
Stacked Bi-GRUReLU Dense

Hier. Self-AttentionDropout

Dropout
ReLU Dense

Attribute
Embedding

City
Embedding

Item
Embedding

Action
Embedding

Average

Impression items Reference items

City

ActionsImpression
item attributes

Active filter
attributes

Concatenate

Softmax Dense

.
.

.

.
.

.

Impression list embeddingGeneral session embedding Action sequence embedding

Other session features Active filter/Impression item attributes embeddingCity embedding Other impression features

Action embeddingImpression/Reference item embedding Other sequence features

Fig. 6. Final model M1 architecture diagram. Components not to scale.

VII. RESULTS

A. Architecture Optimization

The MRR results obtained in the optimization runs for the
three different modes (Random, Bayesian, Top) are plotted in
Figure 7 13

Fig. 7. Hyperparameter optimization and initialization results. Triangles mark
the best runs in each mode.

While the Random mode got within 4.03% of the maximum
value obtained, the MRR in its last 120 runs only increased
by 0.29%. The Bayesian mode promoted a contrasting rapid
performance increase of 3.29% in the following 85 runs,
getting within 0.87% of the best result. Although the increase
was much less significant during the mode’s remaining runs,
the fact that its best value was obtained close to the end
signaled a possibility for further improvement, if time limits
were not of concern. As additional advantages, this second
mode combines significantly increased average performance
values with an approximately four times smaller standard
deviation, reflected in Figure 7’s much lower MRR spread,
where the observable lower peaks mostly correspond to the
kernel optimization convergence failure runs mentioned in the

13The average time per run was of 431 seconds, with CPU-based runs taking
approximately 16 times longer than those completed on GPUs.

setup, which draw random hyperparameter sets. The optimizer’s
exploratory ability is also maintained.14

To more directly assess the Random mode’s impact, the
first 180 runs were repeated using BO GP-UCB without space
initialization. The Random mode’s higher exploratory potential
is favorable, providing a good foundation for future runs. With
a constant UCB β, the more exploitative bayesian optimizer’s
performance is intimately tied to its initial most randomized
runs, which, in this case, resulted in a 9% lower best ini-
tialization MRR. A possibly better performing fully bayesian
alternative could make use of an adaptive βn model, replacing
the fully randomized section [27, 28].

B. Final Model Performance

As in the last optimization section, the M1 model was
evaluated over ten runs with different initialization parameters
but now taking advantage of the full RSC19 dataset. Lowering
the batch size down to 128 was found to slightly improve
the overall performance, with any further reduction only nega-
tively impacting the training time. Early stopping patience was
increased to five epochs in discarded initial runs monitoring
the validation error on the previous section’s optimization test
set. It was noted that the model would consistently obtain the
lowest error value around the second epoch, point at which the
subsequent runs were stopped, producing the results presented
in Table V.15 The average performance values show increases of
two (MRR) to three and a half percent (NLL) when compared
to the optimization results.

Table V. Final M1 model architecture test results. Average and standard
deviation values for 10 runs with different initialization parameters.

M1 Model MRR M. F1 Wt. F1 M. Rec. M. Prec. Wt. Prec. Acc. NLL

M1* 0.65148 0.47277 0.52095 0.42011 0.55582 0.53698 0.53505 1.72953
Average 0.65113 0.47346 0.51923 0.41682 0.56471 0.53941 0.53465 1.73079
O1 Delta +2.01% +3.44% +2.69% - - - +2.54% -3.54%
SD 0.00052 0.00116 0.00009 0.00413 0.01448 0.00595 0.00109 0.00118

With an arithmetic average MRR value of 3.81, the pre-
dictions additionally demonstrate a satisfactory concentration
of 75% of the clicked items within the first four impression
positions. M1*, the best weight combination, achieved an
increased correct classification count but displays precision
values below M1’s averaged runs. The MRR values for the
impression positions approximately reflect the class support’s
distribution but the F1-score displays an abrupt drop from 0.67
into a relatively stable average of approximately 0.46 right
after the first position, due to the combined effect of the recall
and precision distributions, naturally impacted by presentation
bias. The recall displays a sharp decrease similar to F1’s but
bigger in magnitude, with values following the second class
only achieving close to or less than half of the 0.83 maximum.
In contrast, the best precision values are tied to lower positions,
hinting that the models’ predictions are more contextualized in
this region.

Specific factors, including circumstances in which non-
item based interactions correspond to last interaction sequence

14Limiting a few impactful hyperparameters’ values could significantly
improve the Random mode’s performance, a property that would require
manual effort but that is exploited automatically in the Bayesian mode.

15Model training took an average of 309 seconds per epoch, while generating
and evaluating the test set predictions, with a default batch size of 32, took an
average of 0.53 milliseconds per sample.

8

events, contribute to skew the predictions towards upper posi-
tions, with clicks for the top position specifically increasing
by 21.3% in these situations. Searching for new points of
interest or changing sorting methods, for instance, can signal
changes in the intent and objective of the session and introduce
‘soft resets’, meaning that the contextualization provided by
the preceding sequence is negatively impacted. The extreme
bias introduced by shorter interaction sequences in this dataset
directly impacts the ranking performance. Although longer
sequences are able to provide more predictive context, the
expanded impression position possibilities and reduced number
of training samples negatively affect the results.

C. Ablation Study

An ablation study was performed to assess the impact of in-
dividual model components and processing methods. Fourteen
model variants based on M1 were tested under the full model
setup, divided into three categories:

• Model component removal Single component removal,
identified by the respective hyperparameter codes16. (M2)
No impression features, H1; (M3) No interaction se-
quences, H10; (M4) No interaction sequence features,
H11; (M5) No self-attention, H16; (M6) No session
features, H20; (M7) No filter features, H21; (M8) No
metadata features, H8; (M9) No joint dense layer, H25.

• Model baselines With the inability to directly compare
full corpus session-based ranking recommenders to M1,
two modified architectures which influenced its item em-
bedding processing foundation, conditioned on the impres-
sion list items, were added as baseline references. (M10)
Only interaction sequence and impression item embedding
inputs, processed by the respective sequential blocks and
joint MLP, inspired by GRU4Rec+ [10]; (M11) M10 with
attention, inspired by NARM’s local encoder [14].

• Processing Changes in data processing methods. (M12)
No data augmentation, only last session clicks used for
training; (M13) Class balancing method assigning more
influence to minority classes in the cost function, with
the class weights parameter as in [29]; (M14) Min-max
normalization instead of Quant; (M15) Min-max normal-
ization for ordinal features, Quant for the remaining.

Each configuration’s results, corresponding to performance
averages over five runs with different initialization parameters,
are shown in Table VI. It can be noted that the overall most
impactful model component corresponds, by a wide margin,
to the impression features input. With macro and weighted F1
values 82.4% and 51.64% lower than M1, respectively, M2
is significantly worse classification-wise. Its also considerable
ranking performance decrease of 27.25% is followed by M3’s
lack of sequential interaction input, with a much less significant
(16.5 times smaller) drop.

On the other hand, M7 and M5’s lack of filter features and
self-attention mechanism, respectively, result in the smallest
MRR decreases. Although the 0.7% ranking performance in-
crease attributed to the Hierarchical attention implementation
was not as significant as that of other model components, it
promoted an increase in less supported class region predictions,
leading to better recall values at the expense of slightly lower

16Relevant hyperparameter H# codes are retrieved from Table IV

Table VI. Model ablation results averaged over 5 runs with different
initialization parameters (10 for M1) and a batch size of 128. Best and

second-best values are boldfaced and underlined, respectively.

Model MRR Delta (%) M. F1 Wt. F1 M. Rec. M. Prec. Wt. Prec. Acc. NLL

M1 0.65113 - 0.47346 0.51923 0.41682 0.56471 0.53941 0.53465 1.73079

M2 0.47368 -27.25 0.08335 0.25107 0.08875 0.12400 0.23646 0.33909 2.42430
M3 0.64039 -1.65 0.46184 0.50972 0.41436 0.53666 0.52150 0.52199 1.77917
M4 0.64251 -1.32 0.46257 0.50870 0.40935 0.54868 0.52322 0.52223 1.77788
M5 0.64659 -0.70 0.46785 0.51421 0.40945 0.56613 0.53992 0.53046 1.74843
M6 0.64587 -0.81 0.46951 0.51518 0.41549 0.55599 0.53252 0.52811 1.77264
M7 0.64719 -0.61 0.46865 0.51565 0.41242 0.56258 0.53437 0.53025 1.74149
M8 0.64537 -0.89 0.46740 0.51239 0.41431 0.55236 0.53362 0.52878 1.75648
M9 0.64615 -0.77 0.46337 0.51081 0.40950 0.55229 0.53065 0.52554 1.75511

M10 0.45088 -30.75 0.06637 0.22062 0.07429 0.10170 0.20325 0.31191 2.50279
M11 0.45633 -29.92 0.06659 0.22060 0.07409 0.11903 0.21354 0.31525 2.48960

M12 0.63548 -2.40 0.45388 0.50331 0.40206 0.54027 0.52239 0.51871 1.79999
M13 0.59687 -8.33 0.43000 0.48901 0.43655 0.43245 0.51323 0.48034 2.01977
M14 0.63976 -1.75 0.44603 0.50290 0.38818 0.54916 0.52676 0.52114 1.78524
M15 0.64673 -0.68 0.47272 0.51866 0.41932 0.55976 0.53432 0.53186 1.76813

precision. Furthermore, the learned attention weight distribu-
tions provided insight into the model’s sequential branch pre-
diction contribution, improving recommendation interpretabil-
ity. Two of the most interesting data characteristics captured
by the mechanism include the relative higher importance of
last sequential events17 and the greater impact of specific item-
based actions, including item searches and deal interactions. In
addition, some sample examples showed skip-behavior aware-
ness and the mechanism’s ability to isolate interactions with
specific items.

The simplest baseline M10 and M11 models seem to over-
rely on sequence-induced position information, obtaining only
marginally better results than a model limited to top posi-
tion predictions (POS, in the next Section VII-D). With a
30.75% ranking decrease, 7.1 and 2.35 times smaller macro
and weighted F1s, compared to M1’s average values, M10 was
the worst performing configuration. The Hierarchical attention
mechanism’s inclusion in M11 improved its ranking perfor-
mance by 1.21%.

Regarding processing methods, the increased training infor-
mation provided by the data augmentation procedure was found
to have a key positive effect in the overall performance of the
model, corresponding to the second most important M1 rank-
ing component. Although comparatively less influential in the
ranking, proper data normalization was likewise found to have
an important role in the results, showing clear benefits of the
non-linear quantile transformation. Min-max usage in the whole
dataset was linked to the third biggest MRR decrease when
considering single M1 component edits. Its usage is disadvan-
tageous even when the transformation is reduced to ordinal
features. The attempt to balance the problem using the class
weights parameter, which emphasizes minority predictions in
the loss function, saw an increase in the ability of the classifier
to find minority samples, as indicated by the 4.73% macro
recall increase over M1’s, but also a simultaneously significant
decrease in every other metric, including the fourth biggest
ranking-wise. Alternatives, such as different sampling methods,
were not explored as most, especially binary extensions that
balance according to the biggest or smallest class, might not
be suitable for multiclass settings [30].

17This behavior is verified in other sparse datasets [16] and includes non-
item-specific interactions, which generally prompt probability distributions
loosely proportional to the class supports. Further data exploration helped
justify this distribution in RSC19, by revealing that 37.9% of the clicked items
correspond to the references of last item-based interactions.

9

D. Baseline Comparison

The development of suitable baselines to further contextu-
alize M1’s performance faced numerous challenges. User and
utility-based solutions, including matrix factorization methods,
are not suitable for sequential session-based environments and
were not considered [19]. Neighborhood-based approaches are
limited by their often large memory requirements, aggravated
by RSC19’s large item space dimensionality. Session-based
kNN (s-kNN) and its variants have obtained decent results in
some session-based problems [20] but their output scores based
on item interaction occurrence and session similarity are ori-
ented for next-item single-interactions predictions, predominant
in e-commerce datasets. Since most impression items are not
interacted with in RSC19’s sequential events, s-kNN would not
be able to efficiently produce recommendation scores for these
without any type of modification. Therefore only simple, static
baselines without learnable parameters were considered, based
on those used in [8, 10, 14, 17] and the one provided by the
challenge’s organizers, (CL-L), which always recommends the
most globally clicked items. The problem with CL-L is that it
does not account for causality, using future click information
to make predictions. This was fixed in (CL), which only
uses each item’s previously recorded clicks until the relevant
click events’ timestamps. (S-CL) applies the same concept to
local session-based click information, using CL values to break
ties. (POP) extends CL to make use of the remaining views,
interactions and dwell time counts for a measure of global
item ‘popularity’, with (S-POP) doing the same for S-CL.
Given the much discussed bias towards top positions, (POS),
which recommends only the top position’s items, was added.
Following the results of Section VII-C, the (LAST) model was
created to recommend the last interaction sequence reference
item, using S-POP values for non item-based actions. Finally,
(PRICE) always recommends the cheapest impression item and
a random predictor, (RAND), was added for reference.

Table VII. Baseline results and comparison to the best model M1*.

Baseline MRR M. F1 Wt. F1 M. Rec. M. Prec. Wt. Prec. Acc.

M1* 0.65148 0.47277 0.52095 0.42011 0.55582 0.53698 0.53505
Delta +13.72% +11.88% +6.82% -3.21% +34.71% +8.71% +10.64%

LAST 0.57288 0.42255 0.48770 0.43406 0.41260 0.49395 0.48358
S-POP 0.48889 0.24980 0.34504 0.24834 0.25176 0.34591 0.34446
POS 0.42420 0.01736 0.12030 0.04000 0.01109 0.07682 0.27717
CL-L 0.27397 0.09071 0.15718 0.09457 0.08867 0.17229 0.14914
S-CL 0.25488 0.09039 0.15016 0.09275 0.08914 0.16151 0.14376
POP 0.25439 0.07015 0.12223 0.07613 0.06900 0.15108 0.11035
CL 0.23116 0.07278 0.13066 0.07587 0.07138 0.14541 0.12283

PRICE 0.18965 0.05521 0.08882 0.07147 0.06135 0.13193 0.07691
RAND 0.15359 0.03246 0.04902 0.04040 0.04094 0.11612 0.04071

Obtaining only slightly better results than the random predic-
tor, PRICE was the second-worst performing model. Although
the provided baseline, CL-L, secured the fourth-best ranking
result, it was underwhelming when compared to the 1.55
times bigger value required to enter the baseline top three.
Unsurprisingly, the modified CL version performed worse, with
relative drops of 15.6%, 19.8% and 16.9% for the MRR, macro
F1 and weighted F1 respectively. S-CL’s results were, however,
only marginally worse than CL-L’s, demonstrating the impact
of local, session-based information in RSC19. POP’s extension
of CL resulted in a 10% MRR increase but a slight overall
decrease in the remaining classification metrics, aside from

weighted precision. Nevertheless, as with click information, the
session-based S-POP version performed better. In fact, the local
interaction popularity indicators proved to be important enough
for the increase to be much more significant in both ranking
(1.92 times bigger MRR) and classification (3.56 and 2.82 times
multipliers for macro and weighted F1s), leading to the second-
best baseline result. The benefits of having multiple evaluation
metrics are apparent in POS’ case, where the MRR (only
0.065 lower than S-POP, 1.55 times CL-L’s) and also elevated
accuracy might lead to misleading positive conclusions driven
by the biased nature of the label distribution. With the exception
of weighted F1, which is still decently influenced by the correct
first-class predictions, the remaining classification values ex-
pectedly demonstrate the opposite, with results inferior to those
of RAND. In the end, the best baseline result was achieved by
LAST, with considerably better values than S-POP in every
metric and even obtaining a narrowly better macro recall than
M1*. Nonetheless, the remaining M1* delta values show that
the deep learning model still significantly outperforms the
baseline, whose MRR is lower than even the average returned
by the Bayesian mode on the smaller optimization dataset.
Regardless, given how simple the logic behind each of the
baselines is, the obtained results are impressive and signal the
possibility for potential competitive performances with further
focus on more complex configurations.

E. RecSys Leaderboard

Applying [5]’s data split resulted in the ability to use their
noted average difference between local and deployed submis-
sion results in the challenge’s online test set of +1.7% to
generate a final MRR estimate for M1* of 0.66255. This value
is represented in the leaderboard’s result distribution by position
of Figure 8.

0100200300400500600
Leaderboard position

0.0

0.2

0.4

0.6

M
R

R

Leaderboard scores

Fig. 8. RecSys19 leaderboard distribution and M1*’s estimated result.

The MRR distribution for the 575 submissions displays two
significant value step concentrations starting at approximately
positions 550 and 310. The former, more predominant one,
corresponds to CL-L baseline results, which are in fact 4.83%
higher than the local test set values obtained in the previous
Section VII-D, while the latter more closely approximates
the predicted S-POP result, with a 2.35% difference. M1*’s
estimated performance would obtain the 39th position (one
higher than M1’s average), corresponding to the 93.5 and 85.7
percentiles when considering the full submission space and only
values above CL-L’s, respectively.

Although the gap to the top ten was still of a significant
2.11%, the obtained results are quite decent, especially when
taking into account the unfeasible computational requirements,

10

model complexity, and feature generation focus of the best-
performing entries, dominated by decision tree ensembles,
versus M1*’s representation learning emphasis.18

Some of the feature-based strategies used by the preceding
models, such as the generation of additional ranking, aug-
mentation, aggregation and boolean inputs, which frequently
rank the highest in decision tree model importance, could be
used to most likely easily close the small 0.36% and 0.91%
intervals to the top 30 and 20 positions without the need for
architectural changes. Other transformations such as the input
of squared, square root and log versions of continuous features,
are reported to increase the network’s expressive power in
[7], could also be tested for the same effect. With respect to
possible relevant structural changes for ranking performance
improvement, besides ensemble implementations, the adoption
of the transformer architecture, which returned the best neural
network-based results in [32], would be a priority. The im-
plementation of different attention types besides self-attention,
such as those used in [5]’s 7th place solution, could also be
used to enhance the model and enable it to use the sequential
interactions to attend over the impression items directly, for
instance. Factorization-based interaction layers like those in
[34, 36] and residual connections, used in [16, 37], also seem
to offer significant advantages in e-commerce datasets.

All of the enumerated changes would, however, still have
difficulty placing the new model near the top ten, as the higher
2.11% MRR delta is also linked to the usage of non-causal
information by the best performing models, namely the time
difference between clicks and previous sequential events which
is consistently reported as a top contributing feature [5, 31, 32,
34, 35], not used by M1.

VIII. CONCLUSIONS

This work encompassed the development of a deep learning
re-ranking recommender system with self-attention for session-
based environments, subject to an automated modular architec-
tural bayesian optimization process, successfully accomplishing
the initially proposed objectives.

While the predictive representations learned by the model
are undeniably powerful, the re-ranking objective’s applicability
in this domain is limited by the lack of dynamic impression
list presentation [35]. Unlike in YouTube or Amazon, where
recommendations in dedicated video or product pages can
change with every interaction, additional insight in trivago’s
recommendations can only be reflected after drastic interface
events such as sort changes. Furthermore, although RSC19 most
closely resembled a real-world scenario with the availability
of metadata and other contextual features mostly disregarded
in other e-commerce datasets (which often focus solely on
item ID sequences), the lack of crucial information such as

18LogicAI’s 1st place model [31] consisted of a 37 Multiple Additive Regres-
sion Tree (MART) ensemble with 250 different features, plus augmentations,
trained on virtual machines with 96 vCPUs and 624GB RAM; Layer6’s 2nd
place result [32] was obtained by a linear blend of LSTM, Transformer, and
Gradient Boosting Machine (GBM) models, with 330 features, running on a
256GB RAM machine with a Titan V GPU; the remaining entries in the top
five [33–35] used a stacking GBM ensemble, an [36]-inspired neural network
and GBM ensemble, and a GBM, Doc2Vec, MF and BPR hybrid, respectively,
with the latter making use of 518 different features.

item-specific location data or interface details19 hindered the
modeling potential and prevented full ranking applications,
which would have been arguably more useful.

REFERENCES
[1] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system: A survey and new perspectives.

ACM Computing Surveys (CSUR), 52(1):1–38, 2019.
[2] P. Knees, Y. Deldjoo, F. Bakhshandegan Moghaddam, J. Adamczak, G.-P. Leyson, and P. Monreal. RecSys Challenge

2019: Session-based Hotel Recommendations. In Proceedings of the Thirteenth ACM Conference on Recommender
Systems, RecSys ’19, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6243-6/19/09. doi: 10.1145/3298689.
3346974. URL https://doi.org/10.1145/3298689.3346974.

[3] J. Adamczak. RecSys Challenge 2019, March 2019. URL https://tech.trivago.com/2019/03/11/recsys-challenge-2019/.
Last accessed on 2019-09-24.

[4] Our Product. URL https://company.trivago.com/our-product/. Last accessed on 2020-03-12.
[5] R. Gama and H. Fernandes. An attentive RNN model for session-based and context-aware recommendations: a solution

to the RecSys challenge 2019. In Proceedings of the Workshop on ACM Recommender Systems Challenge, pages 1–5,
2019.

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016. ISBN 0262035618. URL
http://www.deeplearningbook.org.

[7] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube recommendations. In Proceedings of the
10th ACM conference on recommender systems, pages 191–198, 2016.

[8] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recommendations with recurrent neural networks.
arXiv preprint arXiv:1511.06939, 2015.

[9] B. Hidasi and A. Karatzoglou. Recurrent neural networks with top-k gains for session-based recommendations. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pages 843–852,
2018.

[10] Y. K. Tan, X. Xu, and Y. Liu. Improved recurrent neural networks for session-based recommendations. In Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems, pages 17–22, 2016.

[11] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi. Personalizing session-based recommendations with
hierarchical recurrent neural networks. In Proceedings of the Eleventh ACM Conference on Recommender Systems,
pages 130–137, 2017.

[12] B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk. Parallel recurrent neural network architectures for feature-rich
session-based recommendations. In Proceedings of the 10th ACM conference on recommender systems, pages 241–248,
2016.

[13] E. Smirnova and F. Vasile. Contextual sequence modeling for recommendation with recurrent neural networks. In
Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, pages 2–9, 2017.

[14] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based recommendation. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, pages 1419–1428, 2017.

[15] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang. STAMP: short-term attention/memory priority model for session-based
recommendation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1831–1839, 2018.

[16] W.-C. Kang and J. McAuley. Self-attentive sequential recommendation. In 2018 IEEE International Conference on
Data Mining (ICDM), pages 197–206. IEEE, 2018.

[17] M. F. Dacrema, P. Cremonesi, and D. Jannach. Are we really making much progress? A worrying analysis of recent
neural recommendation approaches. In Proceedings of the 13th ACM Conference on Recommender Systems, pages
101–109, 2019.

[18] H.-H. Chen, C.-A. Chung, H.-C. Huang, and W. Tsui. Common pitfalls in training and evaluating recommender systems.
ACM SIGKDD Explorations Newsletter, 19(1):37–45, 2017.

[19] M. Ludewig and D. Jannach. Evaluation of session-based recommendation algorithms. User Modeling and User-
Adapted Interaction, 28(4-5):331–390, 2018.

[20] M. Ludewig, N. Mauro, S. Latifi, and D. Jannach. Performance comparison of neural and non-neural approaches to
session-based recommendation. In Proceedings of the 13th ACM Conference on Recommender Systems, pages 462–466,
2019.

[21] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In Proceedings of the 26th
international conference on world wide web, pages 173–182, 2017.

[22] A. F. Zuur, E. N. Ieno, and C. S. Elphick. A protocol for data exploration to avoid common statistical problems.
Methods in ecology and evolution, 1(1):3–14, 2010.

[23] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir,
et al. Wide & deep learning for recommender systems. In Proceedings of the 1st workshop on deep learning for
recommender systems, pages 7–10, 2016.

[24] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al. Keras Tuner, 2019. URL https://github.com/
keras- team/keras- tuner.

[25] J.-C. Lévesque, A. Durand, C. Gagné, and R. Sabourin. Bayesian optimization for conditional hyperparameter spaces.
In 2017 International Joint Conference on Neural Networks (IJCNN), pages 286–293. IEEE, 2017.

[26] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention networks for document classification.
In Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics:
human language technologies, pages 1480–1489, 2016.

[27] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret
and experimental design. arXiv preprint arXiv:0912.3995, 2009.

[28] F. Berkenkamp, A. P. Schoellig, and A. Krause. No-regret bayesian optimization with unknown hyperparameters. arXiv
preprint arXiv:1901.03357, 2019.

[29] Classification on imbalanced data, 2020. URL https://www.tensorflow.org/tutorials/structured data/imbalanced data.
TensorFlow Core API documentation. Last accessed on 2020-02-03.

[30] B. Krawczyk. Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence,
5(4):221–232, 2016.

[31] P. Jankiewicz, L. Kyrashchuk, P. Sienkowski, and M. Wójcik. Boosting algorithms for a session-based, context-aware
recommender system in an online travel domain. In Proceedings of the Workshop on ACM Recommender Systems
Challenge, pages 1–5, 2019.

[32] M. Volkovs, A. Wong, Z. Cheng, F. Pérez, I. Stanevich, and Y. Lu. Robust contextual models for in-session
personalization. In Proceedings of the Workshop on ACM Recommender Systems Challenge, pages 1–5, 2019.

[33] Z. Wang, Y. Gao, H. Chen, and P. Yan. Session-based item recommendation with pairwise features. In Proceedings of
the Workshop on ACM Recommender Systems Challenge, pages 1–5, 2019.

[34] H. Kung-Hsiang, F. Yi-Fu, L. Yi-Ting, L. Tzong-Hann, C. Yao-Chun, L. Yi-Hui, and L. Shou-De. A-HA: A hybrid
approach for hotel recommendation. In Proceedings of the Workshop on ACM Recommender Systems Challenge, pages
1–5, 2019.

[35] M. Ludewig and D. Jannach. Learning to rank hotels for search and recommendation from session-based interaction
logs and meta data. In Proceedings of the Workshop on ACM Recommender Systems Challenge, pages 1–5, 2019.

[36] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun. xdeepfm: Combining explicit and implicit feature interactions
for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1754–1763, 2018.

[37] S. Sun, Y. Tang, Z. Dai, and F. Zhou. Self-Attention Network for Session-Based Recommendation With Streaming
Data Input. IEEE Access, 7:110499–110509, 2019.

19Interface information was only available at click time and is challenging
to estimate for other time steps. In some situations, interacted items were not
present in impression lists even without any interface change signal, which
constrained navigation evolution analysis, for example.

https://doi.org/10.1145/3298689.3346974
https://tech.trivago.com/2019/03/11/recsys-challenge-2019/
https://company.trivago.com/our-product/
http://www.deeplearningbook.org
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://www.tensorflow.org/tutorials/structured_data/imbalanced_data

	Introduction
	The RecSys 2019 challenge
	Related work
	Problem formulation
	Data processing
	Preprocessing
	Feature engineering and representation

	Model architecture optimization
	Results
	Architecture Optimization
	Final Model Performance
	Ablation Study
	Baseline Comparison
	RecSys Leaderboard

	Conclusions

